
A Toolkit for Re-configurable Distributed Scripting
M.Ranganathan , Laurent Andrey, Virginie Schaal and Jean-Philippe Favreau

{mranga,andrey,schaal,favreau}@snad.ncsl.nist.gov

Multimedia and Digital Video Group
National Institute of Standards and Technology

Gaithersburg
MD 20899

Abstract

A large class of distributed testing, control and collaborative applications are reactive or event driven in nature. Such
applications can be structured as a set of handlers that react to events and that in turn can trigger other events. We
have developed an application building toolkit that facilitates development of such applications. Our system allows the
construction of distributed applications that can be dynamically reconfigured and extended while in execution. This
feature can be exploited by constructing dynamic applications that can adapt to available resources. In this paper we
describe our toolkit and an example of its use.

1. Introduction
A large class of distributed collaborative, testing, monitoring and control applications fit the “event-driven”
paradigm. An event-driven application is driven by asynchronous external inputs that cause event-handlers
to be invoked. In a synchronous collaborative system, events are triggered by user inputs. In an
asynchronous collaborative system, events may be triggered by arrival of mail or other notification from
other participants. In a distributed monitoring and control system, events are triggered by transducer inputs.
In a distributed testing scenario, events are triggered by test outputs, timer timeouts and so on.

We have developed an application building framework called AGNI1 that facilitates the development of
event-driven distributed applications. Our system is dynamically extensible - we have the ability to add and
remove active components while the system is in execution. Our system is also dynamically re-configurable
– active components can be relocated at well-defined points in the computation while the system is in
execution. These features are useful in the design of distributed, event-oriented systems such as
collaborative systems where computational resources, user requirements and loads are not known a-priori.

In this paper we describe the design of our system and an example application.

2. Overview of the Programming Model
The important abstractions in our system are Locations, Streams, Agents and Events. We refer to a
communication end-point as a Stream. A Stream has a globally unique name. Messages may be sent to
streams and are consumed in a well-defined order. A Stream may reside on any workstation in the
distributed system that hosts an execution environment for it. We call such an execution environment an
Agent Daemon and refer to it with a unique identifier called a Location. At any given time, a Stream may
reside in only one Agent-daemon (i.e. it has a unique Location referred to as the “Location of the Stream”).
When a message arrives at a Stream, it may trigger the execution of the Agents associated with the Stream.
Agents can be dynamically attached to and removed from Streams and the location of the Stream may be
decided dynamically while the system is in execution. Streams may also be created on the fly.

1 Agents at NIST (also Sanskrit for “fire”)

For a Stream, we define two “events”. An Agent may associate a code fragment with each of these events.
The event-specific code fragment of each of the Agents associated with a Stream, is executed concurrently
when the event occurs. The two Stream-specific events are: (1) The on-append event that occurs when a
message is consumed at a Stream. At message consumption, each of the on-append scripts is executed
concurrently. (2) The on-relocation event occurs at the target location when a Stream is re-located from one
Agent-daemon to another.

In addition, there are two Agent-specific “events”: (1) the on-init event which occurs when an agent is first
initialized at a given location. As the stream moves from location to location, the on-init part of the Agent is
executed exactly once for each new location that it visits. (2) The on-exit event occurs when the agent is
killed or exits. The purpose of this event is resource cleanup. The on-exit script associated with this event
runs at each location where the agent has been initialized but its execution may be deferred until the next
Stream visit to the location. An Agent may specify a portion of global state as being in its briefcase. This
state is re-located (and instantiated in the environment of the Agent at the target location) when the system
is reconfigured.

2.1 Resource Control
Any component of an application, external or internal, can initiate re-configuration or extension of the
system. The purpose of the resource-control mechanism is to provide a means to restrict this power.

Two kinds of resource-control hooks are provided. First, each Agent-daemon can be started with a Daemon
Resource-control Script. This script is specified in sections with each section corresponding to a particular

STREAM (global name, ordering guarantee)

Messages (triggers on_append event)

User Agent 0

on_init
on_append
on_relocation
on_exit

Resource-control
meta-Agent

 resctl_on_append
(execute commands in user-
agent context; decide which
ones get to run)

User Agent 1

on_init
on_append
on_relocation
on_exit

 1

Figure 1: Stream Resource-control architecture.

The resource-control meta-agent gets control first and has the opportunity to intervene before the other agents get to
execute and after agent execution has completed.

 3 3

resctl_post_process (control side-effects generated by user agents)

2 2

event that may result in resource-consumption for the Agent Daemon. System-level actions such as
obtaining permission to add a new Agent Daemon or adding a Stream to the system are approved or denied
by the System Resource Controller which runs at the secure, reliable location. At the level of individual
Streams, each Stream may be created with its own resource controller script – which is again specified in
sections with each section corresponding to a different event. The per-stream resource controller script runs
as a “meta-agent” - it gets control before “user-level” agents get to run on each Stream-specific event.
Using this mechanism, the system designer may place restrictions on which Agents get to see the message
contents, the set of commands that a user-level Agent may use and so on. The meta-agent may also execute
commands in the environment of the user-level Agent – a feature that is useful in the construction of
debuggers.

After the user-agents have finished execution, a post-processing resource-control script may be registered
that can restrict the side effects caused by the user-registered agents – for example by restricting movement
to “dangerous locations”. We have also incorporated an I/O control and stream-flow control mechanisms
for control operations and stream synchronization –details of which we omit for brevity.

Figure 1 illustrates how the resource-control mechanism works.

2.2 Inter Stream Communication
Although we provide RPC as an option, it is expected that the major mode of operation will be through
asynchronous messages. Asynchronous messages provide the means for latency hiding which is necessary
for improved performance in high-latency environments such as the Internet. The system provides a FIFO
ordering guarantee. With this guarantee, if an Agent of a Stream a from location x appends a message “1” to
a Stream b then goes over to location y and appends message “2” to stream b, the Agents of b should
consume the messages in the order <”1”,”2”>. This guarantee must be preserved even when both sender and
receiver are moving.

3. An Adaptive Collaborative Toolkit
The purpose of this application is to provide a means whereby any arbitrary Tcl/Tk application may be
collaboratively shared using the “What You See is What I See” (WYSIWIS) paradigm. The novel feature
here is the use of dynamic re-configuration for latency reduction. The architecture of the application is as
shown in Figure 2 below:

 Tk Application

Mobile Dispatcher Stream

2 Tk

(3) Tk Events

 Tk Application

(1) Tk Events

Application Controller
Stream

Application Controller
Stream

2 Tk(2) Tk Events

(3) Tk Events

(2) Tk Events

Figure 2: Tk- Collaborative Toolkit Architecture

Events are sent to the dispatcher stream first. The dispatcher stream uses mobility to reduce the expected latency
for the interactive user by relocating itself to the place from where the last 50 appends originated.

Each participant runs a copy of the Tk application being shared. The application works by “stealing the
callback” from each Tk widget and dispatching each Tk event generated locally to every other participant.
In order to ensure WYSIWIS, each participant must receive Tk events to replay on his application in the
same order. This is achieved by sending these events to an Event Dispatcher from where it is sent each
participant as shown in the figure above. If the event dispatcher were stationary, this could become quite
irritating for the interactive user as he experiences a round-trip latency for each input event. The dispatcher
keeps a count of source Tk Events and moves to the source location when the count exceeds a threshold –
thereby reducing the expected latency for the interactive user.

5. Related Work
The design presented in this paper has been influenced by several other systems such as TACOMA[1],
Voyager[2] and Aglets[3] as well as the first author’s experience with the Sumatra system[4]. Our main
innovations are to provide a clear naming and inter-stream communication model, resource control
mechanisms and separation of naming and location from functionality – features that we believe eases the
task of building distributed systems. Our work has also been influenced by the work on Active Networks [5].

6.Future Work
There are several aspects of our system that we are currently refining. We are working on utilizing reliable
multicast in our system to improve scalability. We are also working on fault-tolerance and security. We have
developed an integrated Agent monitor and Streams debugger with a global break-point capability. We are
working on a collaborative (peer-to-peer) cache management application involving digital microscope
images and on a distributed test management framework for collaborative systems. We are also looking at
inter-operability with commercial tools.

7. Acknowledgements
This work was supported by DARPA funding. Several aspects of our design are an evolution of ideas and
experience gained from previous work with Anurag Acharya of UCSB [4]. We are indebted to Charles
Crowley for making the source code of Tk Replay [6] freely available.

8. References
[1] D.Johansen, R. van-Renesse, F.B.Schnieder, “An introduction to the TACOMA Distributed System”,

Technical Report 95-23, Dept of Computer Science, University of Tromso, Norway, 1995.

[2] “Voyager White Paper”, http://www.objectspace.com/voyager

[3] B. Venners, “Under the Hood: The architecture of Aglets”, Java World, April 1997.

[4] M. Ranganathan A.Acharya S.D.Sharma and Joel Saltz, “Network-aware Mobile Programs”, USENIX
97.

[5] D.J. Wetherall and D.L. Tennenhouse, “The ACTIVE IP option”, Proc. ACM SIGOPS, 1996.

[6] C. Crowley, “Tk-Replay: Record and Replay in Tk”, USENIX Third Annual Tcl/Tk Workshop, 1995.

